If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+x^2=1120
We move all terms to the left:
10x+x^2-(1120)=0
a = 1; b = 10; c = -1120;
Δ = b2-4ac
Δ = 102-4·1·(-1120)
Δ = 4580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4580}=\sqrt{4*1145}=\sqrt{4}*\sqrt{1145}=2\sqrt{1145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1145}}{2*1}=\frac{-10-2\sqrt{1145}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1145}}{2*1}=\frac{-10+2\sqrt{1145}}{2} $
| -16-4a=2(4-5a) | | b+17=-7;b= | | 6-3x=10x+20 | | 8+8x=-96 | | 9x-12=5x-12 | | 3/3(3x-1/2)+2/3=2/3 | | 8-k+k=-2k+14 | | 6z+2z-4z=8 | | 4–5x=16+x | | n+2=-8n+2 | | X+7x+12=12 | | (1)/y-3=(3)/y-5 | | 39=-9b | | 8(x-2)=-2+6x | | v+4=9 | | -1=x-6/26 | | 2b−16=7b−1 | | 0.5(5x-10)=25 | | 4×5=1/2v-3 | | N=63n-2n | | -5x-10=5(-5x+2) | | m/3-4=26 | | 11x=11;x= | | 2p-2p+2p-p+p=6 | | {n}{12}={1}{2} | | 2t=40-3t | | 2x=2(x+3 | | v-4=5v+12 | | 2/3a=29/30 | | 7-6(4r+1)=-29+6r | | -5(4v+1)=-125 | | 6/21=72/x |